Pattern recognition and machine learning
Language: English Language Series: Information science and statisticsPublication details: 2006 New York Springer ScienceDescription: some Colour 23 cm. xx , 738 pISBN:- 9780387310732
- 621.399 BIS
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Lending Books | Applied Sciences Library Lending Section | Lending Collection | 621.399 BIS (Browse shelf(Opens below)) | Available | 112942 | |||
Lending Books | Applied Sciences Library Lending Section | Lending Collection | 621.399 BIS (Browse shelf(Opens below)) | Available | 112943 | |||
Sheduled Reference | Applied Sciences Library Reference Section | Reference Collection | 621.399 BIS (Browse shelf(Opens below)) | Available | 56710 |
Browsing Applied Sciences Library shelves, Shelving location: Lending Section, Collection: Lending Collection Close shelf browser (Hides shelf browser)
Introduction. Example : polynomial curve fitting ; Probability theory ; Model selection ; The curse of dimensionality Decision theory ; Information theory --
Probability distributions. Binary vehicles ; Multinomial variables ; The Gaussian distribution ; The exponential family ; Nonparametric methods --
Linear models for regression. Linear basis function models ; The bias-variance decomposition ; Bayesian linear regression ; Bayesian model comparison ; The evidence approximation ; Limitations of fixed basis functions --
Linear models for classification. Discriminant functions ; Probabilistic generative models ; Probabilistic discrimitive models ; The Laplace approximation ; Bayesian logistic regression --
Neural networks. Feed-forward network functions ; Network training ; Error backpropagation ; The Hessian matrix ; Regularization in neural networks ; Mixture density networks ; Bayesian neural networks --
Kernel methods. Dual representations ; Constructing kernals ; Radial basis function networks ; Gaussian processes --
Sparse Kernel machines. Maximum margin classifiers ; Relevance vector machines --
Graphical models. Bayesian networks ; Conditional independence ; Markov random fields ; Inference in graphical models --
Mixture models and EM. K-means clustering ; Mixtures of Gaussians ; An alternative view of EM ; The EM algorithm in general --
Approximate inference. Variational inference ; Illustration : variational mixture of Gaussians ; Variational linear regression ; Exponential family distributions ; Local variational methods ; Variational logistic regression ; Expectation propagation --
Sampling methods. Basic sampling algorithms ; Markov chain Monte Carlo ; Gibbs sampling ; Slice sampling ; The hybrid Monte Carlo algorithm ; Estimating the partition function --
Continuous latent variables. Principal component analysis ; Probabilistic PCA ; Kernel PCA ; Nonlinear latent variable models --
Sequential data. Markoc models ; Hidden Markov models ; Linear dynamical systems --
Combining models. Bayesian model averaging ; Committees ; Boosting ; Tree-based models ; Conditional mixture models --
Data sets --
Probability distributions --
Properties of matrices --
Calculus of variations --
Lagrange multipliers.
The field of pattern recognition has undergone substantial development over the years. This book reflects these developments while providing a grounding in the basic concepts of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners.
There are no comments on this title.